Display of Multimeric Antimicrobial Peptides on the Escherichia coli Cell Surface and Its Application as Whole-Cell Antibiotics

نویسندگان

  • Ju Ri Shin
  • Ki Jung Lim
  • Da Jung Kim
  • Ju Hyun Cho
  • Sun Chang Kim
چکیده

Concerns over the increasing emergence of antibiotic-resistant pathogenic microorganisms due to the overuse of antibiotics and the lack of effective antibiotics for livestock have prompted efforts to develop alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) with a broad-spectrum activity and rapid killing, along with little opportunity for the development of resistance, represent one of the promising novel alternatives. Their high production cost and cytotoxicity, however, limit the use of AMPs as effective antibiotic agents to livestock. To overcome these problems, we developed potent antimicrobial Escherichia coli displaying multimeric AMPs on the cell surface so that the AMP multimers can be converted into active AMP monomers by the pepsin in the stomach of livestock. Buf IIIb, a strong AMP without cytotoxicity, was expressed on the surface of E. coli as Lpp-OmpA-fused tandem multimers with a pepsin substrate residue, leucine, at the C-terminus of each monomer. The AMP multimers were successfully converted into active AMPs upon pepsin cleavage, and the liberated Buf IIIb-L monomers inhibited the growth of two major oral infectious pathogens of livestock, Salmonella enteritidis and Listeria monocytogenes. Live antimicrobial microorganisms developed in this study may represent the most effective means of providing potent AMPs to livestock, and have a great impact on controlling over pathogenic microorganisms in the livestock production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial Cell Surface Display: Its Medical and Environmental Applications

Cell-surface display is the expression of peptides and proteins on the surface of living cells by fusing them tofunctional components of cells which are exposed to the environment of cells. This strategy can be carriedout using different surface proteins of cells as anchoring motifs and different proteins from different sourcesas a passenger protein. It is a promising strategy...

متن کامل

Enhanced Bioadsorption of Cadmium and Nickel by E. coli Displaying A Metal Binding Motif Using CS3 Fimbriae

Display of peptides on the surface of bacteria offers many new and exciting applications in biotechnology. Fimbriae is a good candidate for epitope display on the surface of bacteria. The potential of CS3 fimbriae of enterotoxigenic E. coli as a display system has been investigated. A novel cell surface display system with metal binding property was developed by using CS3 fimbriae. Short metal ...

متن کامل

A Peptide Derived from Phage Display Library Exhibits Antibacterial Activity against E. coli and Pseudomonas aeruginosa

Emergence of drug resistant strains to currently available antibiotics has resulted in the quest for novel antimicrobial agents. Antimicrobial peptides (AMPs) are receiving attention as alternatives to antibiotics. In this study, we used phage-display random peptide library to identify peptides binding to the cell surface of E. coli. The peptide with sequence RLLFRKIRRLKR (EC5) bound to the cel...

متن کامل

Comparison of Antimicrobial Properties and Toxicity of Natural S3 Peptide with Horseshoe Crab Amoebocyte Origin and its Mutants

Introduction: Antimicrobial peptides (AMPs) are compounds with antimicrobial properties that are studied widely due to the development of resistance of pathogenic bacteria to antibiotics. In the present study, the toxicity and antimicrobial effects of two natural monomeric peptides (S3 and S∆3) were compared with S3-S∆3 hybrids and S3 tetramers. Material & Methods: Protein hybrids (S∆3S3-2mer-G...

متن کامل

Antibacterial Activity of the Peptide Microcin J25 Produced by Escherichia coli

Background and objectives: Bacteriocins are generally active antimicrobial peptides effective against bacteria closely related to the producer. Escherichia coli produce two bacteriocins: colicins and microcins. Microcin J25 (Mcc J25) is an antibacterial peptide that inhibits bacterial transcription by disrupting the nucleotide-uptake channel of bacterial RNA polymerase. The objective of this st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013